JDBC Protocol Custom Monitoring
From Custom Monitoring, you are familiar with how to customize types, Metrics, protocols, etc. Here we will introduce in detail how to use JDBC(support mysql,mariadb,postgresql,sqlserver at present) to customize Metric monitoring. JDBC protocol custom monitoring allows us to easily monitor Metrics we want by writing SQL query statement.
JDBC protocol collection process
【System directly connected to MYSQL】->【Run SQL query statement】->【parse reponse data: oneRow, multiRow, columns】->【Metric data extraction】
It can be seen from the process that we define a monitoring type of JDBC protocol. We need to configure SSH request parameters, configure which Metrics to obtain, and configure query SQL statements.
Data parsing method
We can obtain the corresponding Metric data through the data fields queried by SQL and the Metric mapping we need. At present, there are three mapping parsing methods:oneRow, multiRow, columns.
oneRow
Query a row of data, return the column name of the result set through query and map them to the queried field.
eg: queried Metric fields:one two three four query SQL:select one, two, three, four from book limit 1; Here the Metric field and the response data can be mapped into a row of collected data one by one.
multiRow
Query multiple rows of data, return the column names of the result set and map them to the queried fields.
eg: queried Metric fields:one two three four query SQL:select one, two, three, four from book; Here the Metric field and the response data can be mapped into multiple rows of collected data one by one.
columns
Collect a row of Metric data. By matching the two columns of queried data (key value), key and the queried field, value is the value of the query field.
eg: queried fields:one two three four query SQL:select key, value from book; SQL response data:
key | value |
---|---|
one | 243 |
two | 435 |
three | 332 |
four | 643 |
Here by mapping the Metric field with the key of the response data, we can obtain the corresponding value as collection and monitoring data.
Custom Steps
HertzBeat Dashboard -> Monitoring Templates -> New Template -> Config Monitoring Template Yml -> Save and Apply -> Add A Monitoring with The New Monitoring Type
Configuration usages of the monitoring templates yml are detailed below.
Monitoring Templates YML
We define all monitoring collection types (mysql,jvm,k8s) as yml monitoring templates, and users can import these templates to support corresponding types of monitoring.
Monitoring template is used to define the name of monitoring type(international), request parameter mapping, index information, collection protocol configuration information, etc.
eg:Define a custom monitoring type app
named example_sql
which use the JDBC protocol to collect data.
# The monitoring type category:service-application service monitoring db-database monitoring custom-custom monitoring os-operating system monitoring
category: db
# Monitoring application type(consistent with the file name) eg: linux windows tomcat mysql aws...
app: example_sql
name:
zh-CN: 模拟MYSQL应用类型
en-US: MYSQL EXAMPLE APP
# Monitoring parameter definition file is used to define required input parameter field structure definition Front-end page render input parameter box according to structure
params:
- field: host
name:
zh-CN: 主机Host
en-US: Host
type: host
required: true
- field: port
name:
zh-CN: 端口
en-US: Port
type: number
range: '[0,65535]'
required: true
defaultValue: 80
placeholder: 'Please enter the port'
- field: database
name:
zh-CN: 数据库名称
en-US: Database
type: text
required: false
- field: username
name:
zh-CN: 用户名
en-US: Username
type: text
limit: 50
required: false
- field: password
name:
zh-CN: 密码
en-US: Password
type: password
required: false
- field: url
name:
zh-CN: Url
en-US: Url
type: text
required: false
# Metric group list
metrics:
- name: basic
# The smaller Metric group scheduling priority(0-127), the higher the priority. After completion of the high priority Metric group collection,the low priority Metric group will then be scheduled. Metric groups with the same priority will be scheduled in parallel.
# Metric group with a priority of 0 is an availability group which will be scheduled first. If the collection succeeds, the scheduling will continue otherwise interrupt scheduling.
priority: 0
# metrics fields list
fields:
# Metric information include field: name type: field type(0-number: number, 1-string: string) label-if is metrics label unit: Metric unit
- field: version
type: 1
label: true
- field: port
type: 1
- field: datadir
type: 1
- field: max_connections
type: 0
# (optional)Monitoring Metric alias mapping to the Metric name above. The field used to collect interface data is not the final Metric name directly. This alias is required for mapping conversion.
aliasFields:
- version
- version_compile_os
- version_compile_machine
- port
- datadir
- max_connections
# (optional)The Metric calculation expression works with the above alias to calculate the final required Metric value.
# eg: cores=core1+core2, usage=usage, waitTime=allTime-runningTime
calculates:
- port=port
- datadir=datadir
- max_connections=max_connections
- version=version+"_"+version_compile_os+"_"+version_compile_machine
protocol: jdbc
jdbc:
# host: ipv4 ipv6 domain name
host: ^_^host^_^
# port
port: ^_^port^_^
platform: mysql
username: ^_^username^_^
password: ^_^password^_^
database: ^_^database^_^
# SQL query method:oneRow, multiRow, columns
queryType: columns
# sql
sql: show global variables where Variable_name like 'version%' or Variable_name = 'max_connections' or Variable_name = 'datadir' or Variable_name = 'port';
url: ^_^url^_^
- name: status
priority: 1
fields:
# Metric information include field: name type: field type(0-number: number, 1-string: string) label-if is metrics label unit: Metric unit
- field: threads_created
type: 0
- field: threads_connected
type: 0
- field: threads_cached
type: 0
- field: threads_running
type: 0
# (optional)Monitoring Metric alias mapping to the Metric name above. The field used to collect interface data is not the final Metric name directly. This alias is required for mapping conversion.
aliasFields:
- threads_created
- threads_connected
- threads_cached
- threads_running
# (optional)The Metric calculation expression works with the above alias to calculate the final required Metric value.
# eg: cores=core1+core2, usage=usage, waitTime=allTime-runningTime
calculates:
- threads_created=threads_created
- threads_connected=threads_connected
- threads_cached=threads_cached
- threads_running=threads_running
protocol: jdbc
jdbc:
# host: ipv4 ipv6 domain name
host: ^_^host^_^
# port
port: ^_^port^_^
platform: mysql
username: ^_^username^_^
password: ^_^password^_^
database: ^_^database^_^
# SQL query method: oneRow, multiRow, columns
queryType: columns
# sql
sql: show global status where Variable_name like 'thread%' or Variable_name = 'com_commit' or Variable_name = 'com_rollback' or Variable_name = 'questions' or Variable_name = 'uptime';
url: ^_^url^_^
- name: innodb
priority: 2
fields:
# Metric information include field: name type: field type(0-number: number, 1-string: string) label-if is metrics label unit: Metric unit
- field: innodb_data_reads
type: 0
unit: times
- field: innodb_data_writes
type: 0
unit: times
- field: innodb_data_read
type: 0
unit: kb
- field: innodb_data_written
type: 0
unit: kb
protocol: jdbc
jdbc:
# host: ipv4 ipv6 domain name
host: ^_^host^_^
# port
port: ^_^port^_^
platform: mysql
username: ^_^username^_^
password: ^_^password^_^
database: ^_^database^_^
# SQL query method:oneRow, multiRow, columns
queryType: columns
# sql
sql: show global status where Variable_name like 'innodb%';
url: ^_^url^_^